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Abstract-This paper proposes a new mechanics model and a semi-analytical method to solve the
problem of a thin strip on an elastic foundation stamped by an elliptical rigid punch, The strip was
divided into three parts according to its contact with the punch and foundation, Analytical solutions
were derived individually for each part using the theories of contact mechanics and strip bending
with large deflection, A numerical algorithm was then developed to obtain the interface forces
through an iteration by considering the compatibility conditions of deformation between the neigh
bouring parts of the strip, The main advantages of the present method are that it relies on fewer
assumptions, is with clear mechanics meaning throughout the analysis, and makes the calculation
more efficient. Copyright 1996 Elsevier Science Ltd,
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half lengths of the minor and major axes of the ellipse-based cylindrical punch, see Fig, 1
half length of the contact zone between the punch and strip
half length of the contact zone between the strip and foundation
Young's modulus
external stamping force per unit width
thickness of the strip
the second moment of area per unit width of the strip cross section = 11'/ 12
elastic stiffness of the elastic foundation
dimensionless bending moment, defined by eqn (10)
dimensionless shear force, defined by eqn (10)
contact stress
dimensionless normal radius of ellipse, defined by eqn (9) (see also Fig, 4)
dimensionless length of an infinitesimal strip element, defined by eqn (9) (see also Fig, 4)
dimensionless membrane force of the strip, defined by eqn (l0)
deflection of the foundation surface, in the F-direction
deflection of the cantilever beam, vertical t~ the z-axis, see Fig, 2(c)
global Cartesian coordinate system, defined by eqn (9), (see also Figs 2(a) and 3)
local axial coordinate of the cantilever beam, with its origin at end A, see Fig, 2(c)
computational parameters, defined by eqn (11)
polar coordinate variable of ellipse, see Fig, 3
included angle of the external normal of the deformed strip surface at Uwith the positive direction
of y-axis, see Fig, 3
included angle of the tangent of the deformed strip surface at IJ with the positive direction of x-axis,
see Fig, 3
curvature of the strip

cantilever beam
elastic foundation
elastic limit
normal direction
punch
tangential direction
central point
contact-off point
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I. INTRODUCTION

Stamping a thin strip on an elastic foundation by a rigid indenter is a mechanics problem
commonly encountered in various engineering fields and has been studied extensively for
some decades. However, the topic is still challenging because it poses a three-body contact
problem involving the determination of the interface stress distributions between the strip
and punch, and the strip and elastic foundation. The deformation of the system involves
strong non-linearity associated with the interaction of the membrane force and bending
moment.

A number of parametric studies have been carried out to understand the combined
effect of plate and foundation properties through the modelling of plate deformation
(Geiger, 1991; Low, 1981; Neumeister, 1992; Ratwani, 1973; Sankar, 1983; Ye, 1994;
Zhang, 1995) and to provide a refined analysis of elastic foundation (Dempsey, 1991; Fan,
1994; Razaqpur and Shan, 1991; Girija, 1991). Nevertheless, the solution has not been
very satisfactory because of the following problems:

(1) If an analytical approach is used, the distributions of the interface contact stresses
are assumed a priori (e.g., Zhang, 1995), which limits the applicability of the solutions in
terms of the indenter profiles, the ratio of the thickness of strip to punch radius, and the
variation of the material properties of the strip and elastic foundation.

(2) A pure numerical analysis (e.g., Geiger, 1991) needs a considerable computational
effort for the study of each specific case.

Accordingly, the development of a practical mechanics model and a corresponding
solution method is of great importance. This paper proposes a new mechanics model to
study the deformation mechanisms of a thin strip stamped by a rigid elliptical punch on an
elastic foundation. Based on this, a semi-analytical method is generated to calculate the
interface forces.

2. THE MECHANICS MODEL

Consider the stamping of a thin strip (thickness: h) on an elastic foundation by a rigid
ellipse-based cylindrical punch (half lengths of the minor and major axes: a, b). The
deformation of the strip is in plane stress and is symmetrical to its central line, as shown in
Fig. 1. The contact zones and interface stresses between the punch and strip and the strip
and foundation are unknown in advance, which are functions of the punch stroke in the
stamping process. Because of the symmetry of deformation, however, we can study half of
the strip only. [n order to analyse the problem properly, let us divide the strip into three
parts according to its contact with the punch and elastic foundation (Fig. 2(a»: (1) the
central part A'A, where the strip is in perfect contact with both the punch and foundation
surfaces, (2) the transition part AC, where the strip is in perfect contact with the foundation
but has no contact with the punch, and (3) the free part CD, where no contact takes place
with either the punch or foundation.

F

punch

Elastic foundation

Fig. I. Stamping a strip on an elastic foundation.
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Fig. 2. The mechanics model.
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The curvature of the central part is a known function which is identical to that of the
punch surface. The contact stresses on the strip of this part are the normal contact stresses
between the strip and punch, qnp and q,p, and the normal and tangential ones between the
strip and elastic foundation, qnd and q'd' However, q,p is negligible compared with q'd' Thus,
we will ignore it in the following analysis, see Fig. 2(b).

The transition part can be modelled as a cantilever beam subjected to both normal
and tangential stresses, qnd and q'd, due to the interaction between the strip and foundation,
see Fig. 2(c). The end A of this part is the contact-off point between the punch and strip,
and end C is the contact-off point between the strip and elastic foundation. The boundary
conditions of the cantilever must be specified to guarantee the continuity of stresses and
deformation across these two ends, i.e.,

(a) The bending moment, membrane and shear force are zero at C.
(b) The deflection and its slope, bending moment and membrane force are equal to

those of the central part at A.

The free part of the strip, CD, does not deform during stamping. Its displacement
relies on the deflection and deflection slope at end C, and can be calculated easily when the
solution to AC is obtained. Hence, we will ignore this part in the following analysis.

To simplify the calculation of the contact stresses, we assume that the normal reaction
of the elastic foundation follows the Winkler's hypotheses, and that the tangential contact
stress between the strip and foundation is proportional to the normal stress, i.e., q'd = /lqnd,
where /l is the friction coefficient. In the next section, we will first obtain the analytical
solutions to parts A'A and AC, and then calculate stresses using a numerical scheme in
conjunction with the compatibility conditions of deformation between the two parts.
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Fig. 3. The elliptical punch.

3. SOLUTIONS

x

3.1. Mathematical description of the mechanics model
The equations of strip bending oflarge deflection can be expressed as (Yu and Zhang,

1996)

dX dY. dcp M
Cis = cos cp, dS = sm cp, dS = EJ = K, (1)

where X and Yare Cartesian coordinates, cp is the included angle of the tangent of the
deformed strip surface at ewith the positive direction of X-axis (Fig. 3), dS is the length of
an infinitesimal strip element (Fig. 4), E, is Young's modulus of the strip material, J is the
second moment of area per unit width of the strip cross section, K is the curvature, and M
is the bending moment. The equilibrium equation of the strip with large deflection can be
written as

dT
d¢ +N+RQ, = 0,

dN
d¢ - T+RQn = 0,

dM
d¢ -RN= 0,

(2)

where T is the membrane force, N is the shear force, Qn and QI are normal and tangential
stresses, ¢ is the included angle of the external normal of the deformed strip surface at e
with the positive direction of the Y-axis, and R is the curvature radius of strip, see Figs 3
and 4. According to the assumption of Winkler's foundation, we have

1On M+dM

T ~I-- \fr T+dT
Qt

N N+dN

R

Fig. 4. A strip element in equilibrium.
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(3)

where k d is the stiffness coefficient of the elastic foundation, f.1 is the friction coefficient
between the strip and elastic foundation, W is the surface deflection of the foundation, and
Qnd and Q'd are the normal and tangential contact stresses between the strip and foundation.
Furthermore, the compatibility conditions between parts A'A and A C can be expressed as

M(e l ) = M(en, T(e l ) = T(en, W(e l ) = Ween, ep(el) = ep(en, (4)

where el is the polar coordinate at the contact-off section A, with the superscripts' - ' and
'+' indicating parts A'A and AC, respectively. The compatibility conditions state that the
deflection of the strip is a continuous function of C2

• Equations (1 )-(4) can also be written
in non-dimensional forms to generalise the solutions:

dx
ds = cos ep,

dv
--'-- = sin rnds 'f"

(5)

dt
def> +n+/2 rq, = 0,

dn
def> -t+Y2rqn = 0,

dm
def> -6'Y2rn = 0,

(6)

(7)

wee; ) = ween, ep(e l ) = ep(en, m(81) = m(en, t(e l ) = t(el), (8)

where

y
v =----=,
. Jab

R
r =----=,

Jab

dS
ds =----=,

Jab

ww=--;;, (9)
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"II
b ~;; 2ay jclJ Ed J7<
a h = -h-' l'J1 = E:-h-' l'J2 = 2al' jb'

a2 Ed
l'J, = 2bha, '

hbE,
l'J4 = --2~'

2a av

bh 2 E,
l'Js=·_-,

4a' ay
(11 )

where ay is the yield stress and Ed is Young's modulus of the elastic foundation.

3.2. Solution to part A'A
The deformation of the strip in this zone follows exactly the geometrical profile of the

punch. Therefore, using the geometrical equation of an ellipse, the deflection function of
the strip can be written as (see Fig. 4)
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1 1 ~.--~---c----,-
y=--[cose-l], r= uJ(smze+YfcosZe)3,
~ yyf

(12)

(13)

where W r is the punch displacement at the punch centre, WI is the displacement at the
contact-off point A, see Fig. 2(a). The bending moment and shear force in the strip can
easily be determined when eqn (12) is substituted into eqns (5) and (6) :

where the relationship between () and </J is shown in Section A.l of the Appendix. Using
eqns (7) and (13), the contact stresses between the strip and elastic foundation can be
expressed as

(16)

Accordingly, the membrane force of the strip and the normal contact stress between the
punch and strip are

and

(18)

when eqns (15) and (16) are substituted into eqn (6). In the above expressions,

and to is the dimensionless membrane force at the central section AI of the strip. The
calculation of G, and Gz above is shown in Section A.4.1 of the Appendix.

3.3. Solution to part AC
As shown in Fig 2(a) and (c), the distributed load of this part is related to both the

displacement at the contact-off section A and the deformation of the beam itself. Hence,
according to eqn (7), the loads on the beam can be expressed as
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where <PI is the <P value at section A, w' is the deflection of cantilever beam which is in the
same direction of punch normal at point A, as shown Fig. 2(a), L is the length of part AC
when ignoring its deformation and L' is its length after deformation. In eqn (21), the first
term in the square brackets is the surface deflection of the foundation when part AC is
rigid, and the second term is caused by the deflection of AC. Consequently, the bending
moment and membrane force can be expressed as

where

t = rqctd~ = f' Jt1J{~ (L-O-W'cos<PI}~'

teen = rJt1J2 [~ (L-~) - w' cos <PI }~,

, fL' sin ({) j;w = --dc..
= cos ({) -

(23)

(24)

3.4. Iteration technique
WI and to in the solutions of parts A'A and A C must be determined by the compatibility

conditions. To simplify the procedure, we start the iteration by ignoring the deformation
of part AC. A simple algorithm can be specified as follows:

(i) give contact-off angle ej,
(ii) calculate the internal forces of part AC by ignoring its deformation (see Section A.3 of
the Appendix for further details), i.e.,

(25)

(26)

(27)

(iii) determine wlO
) ,(SO) with the compatibility conditions by eqns (14), (15), (26) and (27)
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(28)

(29)

(iv) calculate the deflection of part AC, see Section A.2 of the Appendix,
(v) determine instant contact-off point C where q~l = 0, and then calculate L',
(vi) correct the internal forces of part AC, m and t, using

which gives rise to

rL

' rc
[ . ( t/J \ Jm(8])=Jo J~ 1J2 WI'l I-Z)-WU

) dt/Jd~,

(31 )

(vii) calculate W\i+ 1) using the compatibility conditions, eqns (14), (15) and (33) ; here an
internal iteration must be conducted until the compatibility conditions are all satisfied,
(viii) check the convergence according to criterion

(32)

where e is a small positive constant; if it is satisfied, do the next step, otherwise, return to
step (iv),
(ix) calculate qmp, qnd' qtd, t, nand m.

4. A NUMERICAL EXAMPLE

The numerical results presented in this section were calculated on a 486DX33 PC using
the above algorithm. A complete analysis needs 10 minutes of computational time. Unless
particularly specified, the material properties and geometrical dimensions used are
E,/Ed = 100, alh = 50, EJu J = 875, h = 1.0 and Uy = 240 (MPa).

The distribution of the normal contact stress between the strip and punch is shown in
Fig. 5, which demonstrates that the maximum stress moves from the centre towards the
edge of the contact zone as 1'1 increased. It is not difficult to understand that when Yl
increases the surface of the punch becomes more flat, and therefore a stress peak near the
edge of the contact zone must appear. This is similar to the case of stamping with a flat
punch. However, when Yl = I (i.e., the punch profile is circular), the maximum contact
stress will always be at the strip centre, as shown in Fig. 6.

Figure 7 compares the distributions of the normal contact stress between the punch
and strip and that between the strip and elastic foundation. It is clear that the contact
length between the punch and strip, c, and that between the strip and foundation, c', are
different and vary during stamping. When the contact angle 8 increases, c' approaches c.
However, as the punch is rigid, c' is always larger than c. The softer the foundation, the
larger the ratio of c' to c.
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Fig. 5. The variation of the normal contact stresses between the punch and strip (Ii, = 90°).
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Fig. 8. The difference between stamping with and without a foundation (EjEd = 1000, ajh = 10).

In a blank stamping process*, a central gap appears between the punch and strip
surfaces when the punch displacement reaches a certain value (Sankar, 1983; Yu and
Zhang, 1996). Therefore, the contact force in this central zone must be zero. However, our
extensive analyses indicate that for the stamping with an elastic foundation, such central
separation does not happen, even when the foundation is very soft. Figure 8 is an example
that demonstrates clearly the difference of contact stress distributions between these stam
ping processes.

Corresponding to the variation of the contact stresses, the internal forces of the strip,
m and n, vary significantly with the elliptical ratio 1'1' When rl = 1, the bending moment of
the strip in part A'A is constant and the shear force is zero. This indicates a pure bending.
When 1'1 < I, the maximum bending moment is always at the strip centre. When rl > I,
however, the maximum bending moment is always at the edge of part A'A. On the other
hand, the general feature of the membrane force is that its peak moves from the centre
towards the edge of the contact region with increasing rj. Recalling the effect of 1', on the
distribution of contact stresses discussed before, it is clear that rl is one of the most
important geometrical parameters in stamping.

5. CONCLUSIONS

(1) The main advantages of the present model are that it relies on fewer assumptions,
is with clear mechanics meaning throughout the analysis, and makes the calculation more
efficient.

(2) The model and method developed can be extended easily to solve the problems of
stamping with indenters of different geometries.
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APPENDIX

A.1. The relationship between eand ¢
The tangent and normal of an ellipse can be expressed as

X
YI = - -tane+CI (tangent),

rl

y, = 'yl xcote+c2 (normal).

Therefore, according to Fig. 3,

tane d¢ YI
tan¢=--, -------'--'-------

fl de - sin2e+r~cos2e

r~ cos' e de (sin' e+ r~ cos' e)
cos 2 ¢ = ,

sin'e+y~cos'e d¢ rl

(A.I)

(A.2)

A.2. Some detailedformula derivation for part AC
According to the basic equations of plate bending subjected to large deflection, the deflection of part AC can

be expressed as

f
L' sin cp

w' = --de, cos cp .,
(A.3)

where L' is the length of part AC, see Fig. 2(a) and (c). In order to solve eqn (A.3), it is necessary to find the
relationship between the axial coordinate z and the slope of the deformed plate surface. Generally, the bending
moment can be expressed as

n' ie [ (JjJ) ]m= 1J, 112 WI I-I: -W'COS¢I dJjJd¢.

Substituting (AA) into the geometrical equation of plate bending gives rise to

dcp 111 m 111112 fL'fL'[ ( JjJ), ]-d = -- = -- ,WI 1- -L - W cos ¢ I dJjJ d¢.z cos cp cos cp, ,

Therefore,

sincp = 111112 rrf[WI (1- 't)-W'COS¢I }JjJd¢d(.

(AA)

(A.5)

(A.6)

Equations (A.3) and (A.6) are for analysing the deflection of part AC. Because of the non-linearity involved,
they should be solved by an iteration method using the following formulae:
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II sin qJ(i)
(w')(i+ I) = --d~,

, cos qJ(')
(A.7)

(A.8)

A.3. The calculation oldejlection ignoring the deformation ofpart AC
When the effect of deformation of cantilever beam is ignored, according to eqns (5) and (25),

where qJ,_ is the slope of the cantilever beam at end C, see Fig. 2(c). Let

z ~
Z= I-l- T- A-'

then

dz = Leos qJ dqJ

4JA(}. -sin tp)J

The substitution of eqn (A.II) into eqn (A.3) immediately leads to

, IL sin tp f'" L sin tp dtp
w = ,cos tp dx = ~ 41A().-sin tp)J LG"

where

f
~· sin I/J di/J

GJ = -:-:r========,:
~ 41)·(A-sinl/J)J

is an elliptical integration.

AA. The elliptical integration

AA.1. The calculation olG I and G, in eqn (19). If fl ~ I, then

where

(A.9)

(A. 10)

(A.lI)

(A.l2)

(A.l3)

(A.l4)

(A. 15)

(A.16)
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If;, < I, then

('0

G[ = I (I _~k2 cos' ljJ -~ k 4 cos 4 ljJ -fr,k6 cos 6 ljJ -,',gk' cos'ljJ) dljJ
.0

= (gJ! -y, sin 28+gJ sin'28-g4 sin 48 -g5 sin S8),

= h, sin 8-h, sin J 8-h3 sins8-h4 sin'8-h, sin'8,

where

(Sk"+12k 6 +75k') (2k 6 +5k') 5k' 7 7

h, =-" 2560 ,h4 =-~' h, = 1152' k- = I-ri.

A.4.2, The calculation olG, in (A-13), Letting
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(A.17)

(A.IS)

(A 19)

4 • .
l' = J,-smtp. (A.20)

G, can be rewritten as

Using the Taylor series expansion, it becomes

where

g[ = LO-u4 )dU, y, = L'(l-u4 )'dU, g3 = L(I-u4 )'dU,

Y4 = r(1_u4)7 du, u = (1- -=--).
Jo xL

(A.21)

(A.22)

(A.23)


